Prediction of Biodiversity - Correlation of Remote Sensing Data with Lichen Field Samples

نویسندگان

  • L. T. Waser
  • S. Stofer
چکیده

The objective of the present study was to develop a model to predict lichen species richness for six test sites in the Swiss Pre-Alps following a gradient of land use intensity combining airborne remote sensing data and regression models. This study ties in with the European Union Project BioAssess which aimed at quantifying patterns in biodiversity and developing “Biodiversity Assessment Tools” that can be used to rapidly assess biodiversity. For this study lichen surveys were performed on a circular area of 1ha on 96 sampling plots in the six test sites. Lichen relevés were carried out on three different substrates: trees, rocks and soil. In a first step, ecological meaningful variables derived from CIR orthoimages were calculated using both spatial and spectral information and additional lichen expert knowledge. In a second step, all variables were calculated for each sampling plot and correlated with the different lichen relevés. Multiple linear regression models were built containing all extracted variables and a stepwise variable selection was applied to optimize the final models. The predictive power of the models (r ranging from 0.79 for lichens on trees to 0.48 for lichens) can be regarded as good to satisfactory, respectively. Species richness for each pixel within the six test sites was then calculated. The present ecological modelling approach also reveals two main restrictions 1) this method only indicates the potential presence or absence of species and 2) the models may only be useful for calculating species richness in neighboring regions with similar landscape structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(

Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...

متن کامل

Prediction of Soil Salinity Using Neural Network and Multivariate Regression Based on Remote Sensing Indices and Comparison: A Case Study of Qazvin plain's Salt Marsh

Introduction: The spatial and temporal distribution of salts in the soil, the great extent of the Iranian deserts, and the adverse climatic conditions prevailing over them make it difficult to accurately determine the parameters and field measurements in some cases. In the last two decades, the use of field techniques and their combination with remote sensing data has contributed significantly ...

متن کامل

مدل‌سازی فرسایش‌پذیری خاک در منطقۀ خور و بیابانک با استفاده از شاخص‌های دورسنجی

Soil erosion by water and wind processes are carried out widely. So one of the best ways to estimate soil loss and land degradation is regional erodibility model. The aim of this research is codification regional erodibility model by statistical methods, the relation survey in Khoor and Biabanak between physical properties of soils and remote sensing indices. Sampling Method field was linear tr...

متن کامل

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

Remote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)

To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004